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Abstract: Triphenylpyridinium ylid 2, generated by the decarboxylation of betaine 1, were noted 
to react with acetyl chloride, chloroform or acetone to form addition-elimination product and 
proton extraction - carbanion addition products, respectively.  The reaction with chloroform was 
determined as pseudo first order from kinetic experiments.  The values of kobsd and t1/2 for 
decarboxylation at 20, 40 and 50°C were calculated to be 4.6 x 10-4, 8.8 x 10-3, 2.8 x 10-2 min-1 and 
1.5 x 103, 78, 24 minutes, respectively. 
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Nitrogen ylids1,2 are reactive species which are not studied as vastly as phosphorus or 
sulfur ylids3.  We have been studying the chemistry of pyridinium ylids and in a 
previous paper4, we reported the generation of ylid 2 via decarboxylation of pyridinium 
betaine 1 and then studied the reaction with certain electrophile.  In this work, we wish 
to report other type of reactions that observed and the reactivity of 2.  
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In addition to the proton extraction reaction with ethanol, addition reaction with 
benzaldehyde, a new type of addition-elimination reaction was noted.  The reaction of 
pyridinium betaine 1 with acetyl chloride in boiling dichloromethane afforded adduct 3c' 
as white solid (65 %).  The reactions required that reagents be freshly distilled 
otherwise significant amount of protonation product 3a′′′′  was formed. 

Besides the above nucleophilic reactions, unusual phenomena were noted in which 
1 were converted to 4-H pyridines 4 (λmax = 307 and 300 nm for 4a and 4b, respectively)  
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in boiling chloroform (Scheme 2).  Small amount of protonation product 3a and 3a' 
were observed as side product with ratio around 1:3 and the amount depending upon the 
purity of chloroform.  Chloroform of analytical grade or freshly distilled provided 
higher yields of 4.  The 1H spectra of 4 showed significantly high field chemical shifts 
of alkyl group; 13C NMR also showed high field shift of 4-C pyridine ring carbon and 
appearance of CCl3 peak at 77.21 and 77.49 ppm for 4a and 4b, respectively.  The 
formation of 4 was rationalized by the back attack of the resulting counterion CCl3

- to the 
4-position of pyridinium moiety.  This postulate was supported by an independent 
synthesis of 4b in which 3a' was treated with NaOCH3 and CHCl3 at 0°C for 2 hours and 
4b was obtained as white solid (m.p. 130-32°C, 87 %) (Scheme 3).  It was interesting to 
note that no methoxy adduct 6 was isolated and which probably due to the labile C-OCH3 
bond.  It was further noted that 1 in boiling acetone produced similar result and adduct 
5 was formed (Scheme 2).  This type reactions diminished the probability that 
dichlorocarbene was involved for the formation of 4 via intermediate 7.  
Dichlorocarbene was probably not formed due to the existence of electron deficient 
pyridinium system.  The acetone adduct 5b was noted to transform gradually to the 
chloroform adduct 4b in the presence of CHCl3 as monitored by 1H NMR.  The 
structures of 4b and 5b were characterized by unusually high chemical shifts of ethyl 
group in 1H NMR where CH3 peaks appeared at 0.28 and 0.50 ppm for 4b and 5b, 
respectively.  The high field chemical shifts of CH3 might suggest that the phenyl 
groups were oriented perpendicular to the pyridine ring as shown in structure 4'b 
(Scheme 3) and that ethyl group lied between 2,6-phenyl groups and was affected by the 
ring current.  
  Kinetic experiments for the decarboxylation of 1a in chloroform were investigated by 
temperature-varied 1H NMR technique.  The experiments were performed by examining 
the progress of disappearance of the methylene group of 1a.  Reactions under different 
temperatures (0, 20, 40 and 50°C) were explored.  The plot of the ln (concentration), the 
integration of methylene group relatively to the internal standard of cyclohexane, versus 
time gave straight line (Figure 1) which indicated that decarboxylation of 1a was the 
determining-step in the reaction.  The reaction at 0°C took place extremely slowly and 
no significant change was noted after 2 weeks.  The values of kobsd and t1/2 for 
decarboxylation of 1a in chloroform at 20, 40 and 50°C were calculated to be 4.6 x 10-4, 
8.8 x 10-3, 2.8 x 10-2 min-1 and 1.5 x 103, 78, 24 minutes, respectively. 
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In summary, new types of reactions were observed for pyridinium ylid 2 which was 
generated in situ from the decarboxylation of pyridinium betaine 1.  The 
decarboxylation process is pseudo first order and kobsd is increased with increasing 
temperature.  Ylids 2 are relatively reactive species which function as bases or 
nucleophiles depending upon the reaction environment and the para-position of the ring 
may be attacked by certain species to give 4H-pyridines.  
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